Project description

Climate change is one of the main drivers suggested to explain the demise of Late Pleistocene megafauna in Australia. Climate proxies used to test the effect of the palaeoclimate on megafauna extinctions suffer from a lack of representativeness (local-scale, remoteness, etc.). Promising new approaches based on global circulation models (GCM) can overcome these issues and can be used to build climate-change metrics. Climate-change metrics synthesise the complex effects of climate change and can potentially map where species were more likely to (i) adapt in situ to new climatic conditions, (ii) disperse and establish in areas with newly suitable climates, or (iii) decline to extirpation (i.e., become extinct from a particular region, but not vanish entirely). These metrics, including measures of novel and disappearing terrestrial climates, are used extensively to forecast future biological responses to climate change. This project aims to investigate the effects of climate change on megafauna extinction at a continental scale in Australia over the last 130,000 years by applying these metrics to GCM outputs and seek correlations between the proportion of novel and/or disappearing terrestrial climates and the number of extinct species.

Co-supervisors

Dr Frédérik Saltré

Supervisors research focus

I am something of a generalist, but ‘environmental modeller’ largely covers my interests and expertise. My team and I develop models to predict ecosystem function, resilience, and change in the past, present, and future, with a focus on maintaining as much biodiversity as possible for the benefit of all.


Note: You need to register interest in projects from different supervisors (not a number of projects with the one supervisor).
You must also contact each supervisor directly to discuss both the project details and your suitability to undertake the project.